Refinement

| Refinement on F       | $w = 1/\sigma^2(F_o)$                                      |
|-----------------------|------------------------------------------------------------|
| R = 0.035             | $(\Delta/\sigma)_{\rm max} = 0.101$                        |
| wR = 0.045            | $\Delta \rho_{\rm max} = 0.680 \ {\rm e} \ {\rm \AA}^{-3}$ |
| <i>S</i> = 2.73       | $\Delta  ho_{\min} = -0.600 \text{ e } \text{\AA}^{-3}$    |
| 2026 reflections      | Atomic scattering factors                                  |
| 306 parameters        | from International Tables                                  |
| All H-atom parameters | for X-ray Crystallography                                  |
| refined               | (1974, Vol. IV)                                            |

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters  $(Å^2)$ 

$$B_{\rm eq} = (8\pi^2/3)\sum_i\sum_j U_{ij}a_i^*a_i^*\mathbf{a}_i.\mathbf{a}_j.$$

|                                               | х            | у             | Ζ            | $B_{eq}$ |  |  |  |
|-----------------------------------------------|--------------|---------------|--------------|----------|--|--|--|
| Mo                                            | 0.20106 (4)  | 0.18106 (3)   | 0.19109 (3)  | 2.51 (2) |  |  |  |
| Р                                             | 0.69192 (16) | -0.00763 (11) | 0.23347 (13) | 4.33 (7) |  |  |  |
| N                                             | 0.4223 (5)   | 0.2016 (4)    | 0.1489 (4)   | 3.7 (2)  |  |  |  |
| 01                                            | 0.2150 (5)   | -0.0314 (3)   | 0.1908 (4)   | 6.4 (3)  |  |  |  |
| F1                                            | 0.7065 (5)   | 0.1008 (3)    | 0.2395 (4)   | 8.5 (3)  |  |  |  |
| F2                                            | 0.6767 (5)   | -0.1154 (3)   | 0.2236 (5)   | 9.3 (3)  |  |  |  |
| F3                                            | 0.8005 (7)   | -0.0170 (5)   | 0.3350 (4)   | 12.1 (4) |  |  |  |
| F4                                            | 0.5751 (8)   | 0.0032 (4)    | 0.1382 (6)   | 16.4 (5) |  |  |  |
| F5                                            | 0.8138 (7)   | -0.0122 (4)   | 0.1730 (6)   | 13.8 (5) |  |  |  |
| F6                                            | 0.5699 (7)   | -0.0044(5)    | 0.2983 (7)   | 16.0 (6) |  |  |  |
| CI                                            | 0.2179 (6)   | 0.0475 (4)    | 0.1933 (4)   | 3.7 (3)  |  |  |  |
| C2                                            | 0.1754 (6)   | 0.2449 (4)    | 0.0203 (4)   | 3.9 (3)  |  |  |  |
| C3                                            | 0.1053 (8)   | 0.3040 (4)    | 0.0825 (5)   | 4.8 (3)  |  |  |  |
| C4                                            | -0.0054 (7)  | 0.2545 (5)    | 0.1153 (5)   | 4.9 (3)  |  |  |  |
| C5                                            | -0.0063 (7)  | 0.1655 (5)    | 0.0756 (5)   | 4.5 (3)  |  |  |  |
| C6                                            | 0.1037 (7)   | 0.1597 (5)    | 0.0159 (4)   | 4.0 (3)  |  |  |  |
| C7                                            | 0.3092 (8)   | 0.2628 (7)    | -0.0206 (6)  | 6.0 (4)  |  |  |  |
| C8                                            | 0.4188 (8)   | 0.1951 (6)    | 0.0325 (6)   | 5.5 (4)  |  |  |  |
| C9                                            | 0.5030 (9)   | 0.2844 (6)    | 0.1922 (8)   | 5.9 (4)  |  |  |  |
| C11                                           | 0.3465 (6)   | 0.1565 (4)    | 0.3525 (4)   | 3.5 (2)  |  |  |  |
| C12                                           | 0.2795 (7)   | 0.2440 (4)    | 0.3482 (4)   | 4.0 (3)  |  |  |  |
| C13                                           | 0.1309 (7)   | 0.2395 (4)    | 0.3354 (4)   | 4.3 (3)  |  |  |  |
| C14                                           | 0.0716(7)    | 0.1512 (5)    | 0.3273 (5)   | 4.3 (5)  |  |  |  |
| C15                                           | 0.1347 (8)   | 0.0756 (5)    | 0.4004 (5)   | 5.0 (3)  |  |  |  |
| C16                                           | 0.2969 (7)   | 0.0805 (5)    | 0.4178 (5)   | 4.4 (3)  |  |  |  |
| Table 2. Selected geometric parameters (Å, °) |              |               |              |          |  |  |  |

| Mo—N        | 2.282 (5)   | C2C3            | 1.417 (9)  |
|-------------|-------------|-----------------|------------|
| Mo-C1       | 1.947 (6)   | C2C6            | 1.410 (9)  |
| MoC2        | 2.368 (5)   | C2C7            | 1.481 (9)  |
| Mo-C3       | 2.359 (6)   | C3—C4           | 1.399 (11) |
| MoC4        | 2.306 (6)   | C4C5            | 1.390 (11) |
| Mo-C5       | 2.279 (6)   | C5C6            | 1.403 (9)  |
| MoC6        | 2.318 (5)   | C7C8            | 1.513 (11) |
| MoC11       | 2.330 (5)   | C11-C12         | 1.419 (8)  |
| MoC12       | 2.237 (5)   | C11C16          | 1.512 (8)  |
| MoC13       | 2.248 (5)   | C12C13          | 1.399 (10) |
| Mo-C14      | 2.351 (6)   | C13C14          | 1.399 (10) |
| NC8         | 1.500 (9)   | C14—C15         | 1.505 (9)  |
| NC9         | 1.487 (9)   | C15-C16         | 1.525 (10) |
| 01C1        | 1.147 (7)   |                 |            |
| N           | 93.3 (2)    | C6-C2C7         | 125.5 (6)  |
| C1MoC11     | 78.4 (2)    | C11-C12-C13     | 113.7 (6)  |
| C1-Mo-C12   | 112.3 (2)   | C11-C16-C15     | 110.8 (5)  |
| C1-Mo-C13   | 113.5 (2)   | C12C11C16       | 119.8 (6)  |
| C1MoC14     | 81.8 (2)    | C12C13C14       | 116.1 (6)  |
| C2C3C4      | 108.1 (6)   | C13C14C15       | 120.5 (6)  |
| C2C6C5      | 109.1 (6)   | C14-C15-C16     | 110.3 (5)  |
| C2—C7—C8    | 107.0 (5)   | Mo-N-C8         | 111.3 (4)  |
| C3-C4-C5    | 109.0 (6)   | Mo-NC9          | 117.1 (5)  |
| C3—C2—C6    | 106.5 (5)   | Mo-C1-O1        | 173.8 (5)  |
| C3-C2-C7    | 127.6(7)    | C8—N—C9         | 110.6 (6)  |
| C4C5C6      | 107.4 (6)   | NC8C7           | 108.2 (6)  |
| C5-Mo-NC8   | -4.9 (4)    | C11C12C13C14    | -0.1(4)    |
| C4-Mo-C1-O1 | -3.9 (4)    | C12-C13-C14-C15 | 44.5 (5)   |
| C7C2C3C4    | -170.6 (10) | C14-C15-C16-C11 | -3.2 (4)   |
| C7C2C6C5    | 170.7 (9)   | C16-C11-C12-C13 | -45.0 (5)  |
| C2C3C4C5    | -0.5 (4)    |                 |            |

All the data processing was carried out on a MicroVAX 3600 computer using the *NRCVAX* program system (Gabe, Le Page, White & Lee, 1987).

We are grateful to the National Science Council of Taiwan for financial support.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: HU1051). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

#### References

- Gabe, E. J., Le Page, Y., White, P. S. & Lee, F. L. (1987). Acta Cryst. A43, C-294.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Wang, T.-F., Lee, T.-Y., Chou, J.-W. & Ong, C.-W. (1992). J. Organomet. Chem. 423, 31–38.
- Wang, T.-F. & Wen, Y.-S. (1992). J. Organomet. Chem. 439, 155-162.

Acta Cryst. (1996). C52, 526-529

## Cadmium(II) Chloride Adduct with an Olefinic Double Betaine: *catena*-Poly[tetraaquadiethanoltris[dichlorocadmium(II)] *cis*-bis(4-dimethylamino-1-pyridinio)butenedioate hydrate]

DE-DONG WU AND THOMAS C. W. MAK

Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong. E-mail: tcwmak@cuhk.hk

(Received 10 May 1995; accepted 25 August 1995)

### Abstract

The structure of a cadmium(II) chloride adduct with an olefinic double betaine {systematic name: *catena*poly[[(diaquacadmium)-di- $\mu$ -chloro-(diethanolcadmium)di- $\mu$ -chloro-(diaquacadmium)-di- $\mu$ -chloro] *cis*-bis(4-dimethylamino-1-pyridinio)butenedioate monohydrate]}, [(CdCl<sub>2</sub>)<sub>3</sub>(C<sub>2</sub>H<sub>6</sub>O)<sub>2</sub>(H<sub>2</sub>O)<sub>4</sub>]<sub>n</sub>.n(C<sub>18</sub>H<sub>20</sub>N<sub>4</sub>O<sub>4</sub>).nH<sub>2</sub>O, is based on an infinite zigzag chain consisting of a series of corner-sharing CdCl<sub>2</sub> quadrilaterals with aqua or ethanol ligands around each Cd<sup>II</sup> atom, forming a CdCl<sub>4</sub>O<sub>2</sub> octahedral coordination polyhedron. The olefinic double betaine has no association with the metal atoms, being bound to the aqua and ethanol ligands in the chain and to the lattice water molecule by hydrogen bonding.

#### Comment

Betaine  $(Me_3N^+CH_2CO_2^-;$  trimethylammonioacetate) and its derivatives, considered as neutral structural analogues of the corresponding carboxylate anions, are very good proton acceptors and versatile ligands, and can form water-soluble cadmium complexes in a variety of coordination modes (Chen & Mak, 1991*a,b*; Chen, Mak, Huang & Lü, 1992). The present report deals with the preparation and crystal structure of a cadmium chloride adduct with an olefinic double betaine that possesses pairs of *cis* anionic carboxylate groups and positively charged pyridinium substituents, namely *catena*-poly-[[(diaquacadmium)-di- $\mu$ -chloro-(diethanolcadmium)-di- $\mu$ chloro-(diaquacadmium)-di- $\mu$ -chloro] *cis*-bis(4-dimethylamino-1-pyridinio)butenedioate monohydrate], (I).



The structure of the title adduct comprises an infinite zigzag chain plus the uncoordinated olefinic double betaine and a lattice water molecule (Fig. 1). The coordination geometry about each Cd<sup>II</sup> atom is octahedral, involving four Cl ligands [Cd—Cl = 2.570(3)– 2.679(3)Å] and two *cis*-related O atoms [Cd—O = 2.266(8)–2.380(7)Å], the most distorted bond angles about the three crystallographically independent cadmium(II) atoms being 86.0(2), 85.1(1) and 82.8(2)°. Such an octahedral environment about Cd<sup>II</sup> is well documented and indeed preferred for most of the known cadmium(II) carboxylates (Prince, 1987). Unlike atoms



Fig. 1. Perspective view (35% probability displacement ellipsoids) of the structure of the title adduct with the atom-numbering scheme, excluding the H atoms. Each disordered ethanol molecule is shown in one of its two orientations. Hydrogen bonds are indicated by broken lines.

Cd(1) and Cd(3), in which the two *cis*-related O atoms are from two aqua ligands, the pair of O atoms around atom Cd(2) belong to two ethanol ligands. Neighbouring Cd<sup>11</sup> atoms are linked by a pair of bridging Cl ligands [Cd—Cl—Cd = 91.0 (1)–92.4 (1)°] to generate a one-dimensional polymeric chain structure similar to that in the cadmium complex of a betaine derivative [Cd(Et<sub>3</sub>NCH<sub>2</sub>CO<sub>2</sub>)( $\mu$ -Cl<sub>2</sub>)]<sub>n</sub> (Chen, Mak, Huang & Lü, 1992); however, in the latter case the *cis*-related positions are occupied by two O atoms of a symmetrical chelating carboxylate group of the betaine ligand, and the coordination geometry about Cd<sup>11</sup> is much more distorted.

The olefinic double betaine has no direct association with the metal atoms, being bound to the aqua and ethanol ligands in the chain by hydrogen bonds  $[O \cdots O = 2.689(10) - 2.775(8) \text{ Å}]$ ; the lattice water molecule is involved in three hydrogen bonds  $[O(5W) \cdots O(3^{i}) 2.773(8), O(5W) \cdots Cl(6)]$  $3.228(9), O(5) \cdots O(5W) 2.629(12)$ Å; see Table 3]. The configuration of the olefinic double betaine is significantly different from those in its hexahydrated form (Weiss, Roth, Lowack & Bremer, 1990) and its perchloric or nitric acid adducts (Wu & Mak, 1994a). in which two carboxylate groups are (i) twisted out of the plane of the central double bond in a conrotatory fashion, and (ii) coplanar with the central double bond, respectively. In the present adduct, one carboxylate group is almost coplanar with the double bond  $[O(1)-C(1)-C(2)-C(3) = 4.0(9)^{\circ}]$ , while  $C(2) = 89.9 (9)^{\circ}$ ]. Such an arrangement of the two carboxylate groups is known in metal complexes with a coordinated olefinic double-betaine ligand, such as  $[Hg_2(C_{18}H_{20}N_4O_4)_2X_4.6HgX_2]_n$  (X = Cl, Br) (Wu & Mak, 1994b) and  $[Cd_3(C_{18}H_{20}N_4O_4)_3I_2(H_2O_6)_n]_{n-1}$ [CdI<sub>4</sub>]<sub>2n</sub>.nH<sub>2</sub>O (Wu & Mak, 1995). Most betaine compounds are versatile ligands and exhibit strong ligation behaviour towards metals. Occurrence of the uncoordinated olefinic double betaine in the present metal complex may be due to its large steric bulk as compared with the coordinated chloro, aqua and ethanol ligands.

### Experimental

The olefinic double betaine in its hexahydrated form was synthesized by a literature method (Weiss *et al.*, 1990). The title adduct was prepared by dissolving CdCl<sub>2</sub> (81.3 mg, 0.40 mmol) and the double betaine (92.8 mg, 0.20 mmol) in hot water (10 ml). The resulting colourless solution was cooled and covered with ethanol (5 ml). Slow diffusion at room temperature for several days yielded colourless plate-like crystals.

Crystal data

$$\begin{bmatrix} Cd_3Cl_6(C_2H_6O)_2(H_2O)_4 \end{bmatrix} - & Mo \ K\alpha \ radiation \\ C_{18}H_{20}N_4O_4.H_2O & \lambda = 0.71073 \ \text{\AA} \end{bmatrix}$$

528

# $[Cd_{3}Cl_{6}(C_{2}H_{6}O)_{2}(H_{2}O)_{4}].C_{18}H_{20}N_{4}O_{4}.H_{2}O$

| $M_{\rm r} = 1088.5$                      | Cell parameters from 25                                          | O(1)         | 0.2867 (8)        | 0.2082(7)       | 0.2203 (3)                  | 0.054 (3)            |
|-------------------------------------------|------------------------------------------------------------------|--------------|-------------------|-----------------|-----------------------------|----------------------|
| Triclinic                                 | reflections                                                      | O(2)         | 0.2647 (8)        | 0.3086 (7)      | 0.1266 (3)                  | 0.055 (3)            |
| DI                                        | $A = 60, 125^{\circ}$                                            | O(3)         | 0.3275 (7)        | 0.3300 (6)      | 0.3733 (3)                  | 0.043 (2)            |
|                                           | b = 0.0 - 12.5                                                   | O(4)         | 0.1178 (6)        | 0.1461 (6)      | 0.3417(3)                   | 0.043 (2)            |
| a = 10.082(1) A                           | $\mu = 2.175 \text{ mm}$                                         | N(1)         | 0.0910(6)         | 0.4217 (0)      | 0.1802(3)                   | 0.027(2)             |
| b = 10.746(2) A                           | T = 293  K                                                       | N(2)         | -0.1149 (8)       | 0.0032(7)       | 0.0307 (3)                  | 0.040(3)             |
| c = 19.155(9) Å                           | Plate                                                            | N(3)<br>N(4) | -0.1335(7)        | 0.4108(0)       | 0.5259(5)<br>0.4443(3)      | 0.023(2)             |
| $\alpha = 95.81(2)^{\circ}$               | $0.40 \times 0.30 \times 0.10$ mm                                | C(1)         | 0.1333 (7)        | 0.2826(8)       | 0.1864(4)                   | 0.038 (3)            |
| $\beta = 98.05(2)^{\circ}$                | Colourless                                                       | C(2)         | 0.1612 (8)        | 0.3520(7)       | 0.2231 (4)                  | 0.031 (3)            |
| p = 10.05 (2)<br>$r = 112.63 (1)^{\circ}$ | 0010211000                                                       | C(3)         | 0.1421 (7)        | 0.3416(7)       | 0.2899 (4)                  | 0.024 (3)            |
| $\gamma = 112.05(1)$                      |                                                                  | C(4)         | 0.2022 (9)        | 0.2629 (8)      | 0.3365 (4)                  | 0.032 (3)            |
| V = 1809.0(12)  A                         |                                                                  | C(5)         | 0.1709 (8)        | 0.5342 (8)      | 0.1537 (4)                  | 0.032 (3)            |
| Z = 2                                     |                                                                  | C(6)         | 0.1067 (8)        | 0.5952 (8)      | 0.1120 (4)                  | 0.032 (3)            |
| $D_x = 1.934 \text{ Mg m}^{-3}$           |                                                                  | C(7)         | -0.0487 (9)       | 0.5445 (8)      | 0.0921 (4)                  | 0.033 (3)            |
| -                                         |                                                                  | C(8)         | -0.1279 (9)       | 0.4260 (8)      | 0.1214 (4)                  | 0.035 (3)            |
| Data collection                           |                                                                  | C(9)         | -0.0575 (8)       | 0.3707 (7)      | 0.1625 (4)                  | 0.031 (3)            |
|                                           | 5425 charmed and entires                                         | C(10)        | -0.0362 (11)      | 0.7254 (9)      | 0.0229 (5)                  | 0.055 (4)            |
| Siemens R3m/V diffractom-                 | 5455 observed reflections                                        | C(11)        | -0.2748 (10)      | 0.54/6(11       | ) 0.0283 (5)                | 0.060 (5)            |
| eter                                      | $[F > 4\sigma(F)]$                                               | C(12)        | -0.0468 (8)       | 0.3378(7)       | 0.3575 (4)                  | 0.028(3)             |
| $\omega$ scans                            | $R_{\rm int} = 0.022$                                            | C(13)        | -0.1117(8)        | 0.4005(7)       | 0.3930 (4)                  | 0.030(3)             |
| Absorption correction:                    | $\theta_{\rm max} = 25.0^{\circ}$                                | C(14)        | 0.0500 (8)        | 0.5440(7)       | 0.3732 (4)                  | 0.020(3)             |
| 1/2 scan (Konfmann &                      | $h = 0 \rightarrow 11$                                           | C(16)        | 0.1122 (8)        | 0.5500(7)       | 0.3348 (4)                  | 0.031 (3)            |
| Unbor 1068)                               | $k = -12 \rightarrow 11$                                         | C(17)        | -0.2527(9)        | 0.5296 (9)      | 0.4775 (5)                  | 0.044 (4)            |
| Tubel, 1908)                              | $k = -12 \rightarrow 11$                                         | C(18)        | -0.0908 (11)      | 0.7524 (9)      | 0.4555 (5)                  | 0.055 (4)            |
| $I_{\min} = 0.522, \ I_{\max} =$          | $l = -22 \rightarrow 22$                                         | ,            | ,                 |                 |                             |                      |
| 0.741                                     | 3 standard reflections                                           | † Site o     | ccupancy factor   | s for C(19) and | d C(19') are 0.79 (4        | ) and 0.21 (4),      |
| 6924 measured reflections                 | monitored every 97                                               | respect      | ively, and for C( | 22) and C(22')  | ) are 0.53 (2) and 0.       | 47 (2), respec-      |
| 6519 independent reflections              | reflections                                                      | tively.      | •                 |                 |                             | -                    |
| ×                                         | intensity decay: 1.1%                                            |              |                   |                 |                             |                      |
| _                                         | , , , , , , , , , , , , , , , , , , ,                            |              |                   | . 1             | . •                         | (Å 0)                |
| Refinement                                |                                                                  |              | Table 2. Sele     | ctea geome      | tric parameters             | (A, °)               |
| Refinement on F                           | $\Delta \rho_{\rm max} = 1.58 \ {\rm e} \ {\rm \AA}^{-3}$        | Cd(1)        | -Cl(1)            | 2.577 (2)       | Cd(1)—Cl(2)                 | 2.596 (2)            |
| R = 0.051                                 | $\Delta \rho_{\rm min} = -0.75 \ {\rm e} \ {\rm \AA}^{-3}$       | Cd(1)—       | -Cl(3)            | 2.650 (3)       | Cd(1)—Cl(1')                | 2.570 (3)            |
| R = 0.051<br>mP = 0.072                   | Extinction correction:                                           | Cd(1)        | -O(1W)            | 2.288 (6)       | Cd(1) = O(2W)               | 2.378(7)             |
| $W_{\rm A} = 0.072$                       | $E^* = E[1 + (0.02)]$                                            | Cd(2)-       | -C1(2)            | 2.608 (2)       | Cd(2) = Cl(3)               | 2.614 (2)            |
| 5 = 1.95                                  | $r = r [1 + (0.02\chi)]$                                         |              | C(4)              | 2.079(3)        | Cd(2) = Cl(3)               | 2.017 (2)            |
| 5435 reflections                          | $\times F^2/\sin 2\theta$ ] (14                                  | Cd(2)        | -O(3)             | 2.200 (8)       | Cd(3) - Cl(5)               | 2.230(7)<br>2.638(3) |
| 416 parameters                            | Extinction coefficient:                                          | Cd(3)-       | -Cl(6)            | 2.583 (2)       | Cd(3) - Cl(6'')             | 2.609 (2)            |
| H-atom parameters not                     | $\chi = 0.00031$ (6)                                             | Cd(3)-       | -O(3W)            | 2.289 (6)       | Cd(3)-O(4W)                 | 2.380(7)             |
| refined                                   | Atomic scattering factors                                        | 0(5)(        | C(19)             | 1.420 (18)      | O(5)—C(19')                 | 1.44 (6)             |
| $w = 1/[\sigma^2(F) + 0.0005F^2]$         | from International Tables                                        | C(19)-       | -C(20)            | 1.48 (2)        | C(19')—C(20)                | 1.45 (4)             |
| $(\Lambda/\sigma) = 0.001$                | for V ray Crystallography                                        | 0(6)—(       | 2(21)             | 1.386 (19)      | C(21)—C(22)                 | 1.66 (4)             |
| $(\Delta / 0)_{max} = 0.001$              | Jor X-ray Crystanography                                         | C(21)—       | -C(22')           | 1.53 (3)        | O(1)—C(1)                   | 1.241 (12)           |
|                                           | (19/4, Vol. IV)                                                  | 0(2)—(       | 2(1)              | 1.233 (11)      | O(3)—C(4)                   | 1.249 (9)            |
|                                           |                                                                  | 0(4)(        | C(4)              | 1.240 (9)       | N(1) - C(2)                 | 1.451 (11)           |
|                                           |                                                                  | N(1)         | C(5)              | 1.363 (9)       | N(1) = C(9)                 | 1.339 (9)            |
| Table 1. Fractional atomic                | c coordinates and equivalent                                     | N(2)         | C(7)<br>C(11)     | 1.322 (12)      | N(2) = C(10)<br>N(3) = C(3) | 1.448 (12)           |
| isotropic displacen                       | nent parameters ( $\check{A}^2$ )                                | N(2)         | C(11)             | 1.407 (12)      | N(3) = C(16)                | 1 370 (9)            |
|                                           | ······································                           |              | C(12)             | 1 342 (12)      | N(4) - C(17)                | 1.445 (11)           |
| $U_{\rm eq} = (1/3)\Sigma$                | $_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j$ . | N(4)         | C(18)             | 1.443 (11)      | C(1)—C(2)                   | 1.510 (14)           |
|                                           |                                                                  | C(2)         | 2(3)              | 1.329 (11)      | C(3)—C(4)                   | 1.509 (12)           |
| r 1                                       | 7 1/22                                                           |              |                   |                 |                             |                      |

| U | eq | = | (1 | 1 | 3) | 2 | i i i | $\Sigma_j U$ | <sup>j</sup> ij | a <sub>i</sub> * | a'j | a | i . 2 | ij. | • |
|---|----|---|----|---|----|---|-------|--------------|-----------------|------------------|-----|---|-------|-----|---|
|---|----|---|----|---|----|---|-------|--------------|-----------------|------------------|-----|---|-------|-----|---|

|         | x           | у            | Ζ           | $U_{eq}$   |
|---------|-------------|--------------|-------------|------------|
| Cd(1)   | 0.4852 (1)  | 0.0236(1)    | 0.0948 (1)  | 0.030 (1)  |
| Cd(2)   | 0.6344 (1)  | -0.0964 (1)  | 0.2529(1)   | 0.034 (1)  |
| Cd(3)   | 0.4728 (1)  | 0.0074 (1)   | 0.4029(1)   | 0.030(1)   |
| CI(1)   | 0.3052 (2)  | -0.0958 (2)  | -0.0249 (1) | 0.045 (1)  |
| Cl(2)   | 0.6497 (2)  | 0.1379 (2)   | 0.2201 (1)  | 0.033 (1)  |
| CI(3)   | 0.5190 (2)  | -0.2022 (2)  | 0.1184 (1)  | 0.042 (1)  |
| CI(4)   | 0.3664 (2)  | -0.1583 (2)  | 0.2823 (1)  | 0.035 (1)  |
| CI(5)   | 0.7280 (2)  | 0.0033 (2)   | 0.3895 (1)  | 0.037 (1)  |
| Cl(6)   | 0.4095 (2)  | -0.1854 (2)  | 0.4790 (1)  | 0.039 (1)  |
| O(1W)   | 0.2911 (6)  | -0.0209 (6)  | 0.1518 (3)  | 0.039 (2)  |
| O(2W)   | 0.4579 (6)  | 0.2266 (5)   | 0.0716 (3)  | 0.042 (2)  |
| O(3W)   | 0.5063 (6)  | · 0.1971 (5) | 0.3509 (3)  | 0.037 (2)  |
| O(4W)   | 0.2417 (6)  | 0.0029 (6)   | 0.4198 (3)  | 0.045 (3)  |
| O(5W)   | 0.4920 (9)  | -0.3936 (7)  | 0.3784 (4)  | 0.077 (4)  |
| O(5)    | 0.6239 (9)  | -0.3038 (7)  | 0.2733 (4)  | 0.071 (4)  |
| C(19)†  | 0.595 (2)   | -0.4213 (16) | 0.2224 (8)  | 0.071 (6)  |
| C(19')† | 0.695 (6)   | -0.379 (3)   | 0.240 (3)   | 0.06 (2)   |
| C(20)   | 0.6475 (14) | -0.5185 (12) | 0.2541 (6)  | 0.074 (6)  |
| O(6)    | 0.8738 (7)  | -0.0322 (8)  | 0.2417 (4)  | 0.070 (3)  |
| C(21)   | 0.9298 (16) | -0.0885 (15) | 0.1911 (7)  | 0.098 (8)  |
| C(22)†  | 0.942 (3)   | 0.009 (3)    | 0.1277 (15) | 0.113 (12) |
| C(22')† | 0.992 (2)   | -0.176 (2)   | 0.2320 (11) | 0.057 (7)  |
|         |             |              |             |            |

| C1/2) 01/2)                                 |            |                             |            |
|---------------------------------------------|------------|-----------------------------|------------|
| Ca(2)—CI(2)                                 | 2.608 (2)  | Cd(2)—Cl(3)                 | 2.614 (2)  |
| Cd(2)—Cl(4)                                 | 2.679 (3)  | Cd(2)—Cl(5)                 | 2.617 (2)  |
| Cd(2)—O(5)                                  | 2.266 (8)  | Cd(2)—O(6)                  | 2.290 (7)  |
| Cd(3)-Cl(4)                                 | 2.582 (2)  | Cd(3)—Cl(5)                 | 2.638 (3)  |
| Cd(3)—Cl(6)                                 | 2.583 (2)  | Cd(3)—Cl(6 <sup>ii</sup> )  | 2.609 (2)  |
| Cd(3)—O(3W)                                 | 2.289 (6)  | Cd(3)—O(4W)                 | 2.380 (7)  |
| O(5)-C(19)                                  | 1.420 (18) | O(5)—C(19')                 | 1.44 (6)   |
| C(19)—C(20)                                 | 1.48 (2)   | C(19')—C(20)                | 1.45 (4)   |
| O(6)-C(21)                                  | 1.386 (19) | C(21)—C(22)                 | 1.66 (4)   |
| C(21) - C(22')                              | 1.53 (3)   | O(1)—C(1)                   | 1.241 (12) |
| O(2) - C(1)                                 | 1.233 (11) | O(3)—C(4)                   | 1.249 (9)  |
| O(4)—C(4)                                   | 1.240 (9)  | N(1)—C(2)                   | 1.451 (11) |
| N(1) - C(5)                                 | 1.363 (9)  | N(1)-C(9)                   | 1.359 (9)  |
| N(2) - C(7)                                 | 1,322 (12) | N(2)-C(10)                  | 1.448 (12) |
| N(2) - C(11)                                | 1.467 (12) | N(3)—C(3)                   | 1.440(11)  |
| N(3) - C(12)                                | 1.377 (9)  | N(3)-C(16)                  | 1.370 (9)  |
| N(4) - C(14)                                | 1.342 (12) | N(4)-C(17)                  | 1.445 (11) |
| N(4) - C(18)                                | 1.443 (11) | C(1) - C(2)                 | 1.510 (14) |
| C(2) - C(3)                                 | 1.329 (11) | C(3)—C(4)                   | 1.509 (12) |
| $C(5) \rightarrow C(6)$                     | 1.331 (12) | C(6)—C(7)                   | 1.425 (11) |
| C(7) - C(8)                                 | 1.436(11)  | C(8)—C(9)                   | 1.318 (13) |
| C(12) - C(13)                               | 1.338 (12) | C(13)—C(14)                 | 1.422 (11) |
| C(14)—C(15)                                 | 1.412 (10) | C(15)—C(16)                 | 1.351 (13) |
| Cl(1)—Cd(1)—Cl(2)                           | 175.7 (1)  | Cl(1)-Cd(1)-O(2W)           | 86.7 (1)   |
| Cl(1)Cd(1)O(1W)                             | 89.6(1)    | Cl(2)Cd(1)Cl(3)             | 86.9 (1)   |
| $Cl(1)$ — $Cd(1)$ — $Cl(1^i)$               | 88.5 (1)   | Cl(2) - Cd(1) - O(2W)       | 93.5 (1)   |
| $Cl(2) \rightarrow Cd(1) \rightarrow O(1W)$ | 86.1(1)    | Cl(3) - Cd(1) - O(1W)       | 93.9 (2)   |
| $Cl(2) - Cd(1) - Cl(1^{1})$                 | 95.8 (1)   | $Cl(3) - Cd(1) - Cl(1^{1})$ | 92.8 (1)   |
| Cl(3) - Cd(1) - O(2W)                       | 178.8 (2)  | $O(1W) - Cd(1) - Cl(1^{1})$ | 173.1 (2)  |
| O(1W) - Cd(1) - O(2W)                       | 87.3 (2)   | Cl(2)-Cd(2)-Cl(3)           | 87.4 (1)   |
| $O(2W)$ — $Cd(1)$ — $Cl(1^{i})$             | 86.0 (2)   | Cl(2)—Cd(2)—Cl(5)           | 93.0(1)    |
| Cl(2) - Cd(2) - Cl(4)                       | 91.8(1)    | Cl(2)-Cd(2)-O(6)            | 88.3 (2)   |
| C1(2)-Cd(2)-O(5)                            | 175.8 (2)  | Cl(3)—Cd(2)—Cl(5)           | 175.3 (1)  |
| Cl(3) - Cd(2) - Cl(4)                       | 90.2 (1)   | Cl(3)—Cd(2)—O(6)            | 96.6 (2)   |
| C1(3)—Cd(2)—O(5)                            | 89.1 (2)   | Cl(4)-Cd(2)-O(5)            | 90.4 (2)   |
| Cl(4)-Cd(2)-Cl(5)                           | 85.1 (1)   | Cl(5)Cd(2)O(5)              | 90.7 (2)   |
| Cl(4)-Cd(2)-O(6)                            | 173.3 (2)  | O(5)-Cd(2)-O(6)             | 89.9 (3)   |
| Cl(5)-Cd(2)-O(6)                            | 88.1 (2)   | Cl(4)Cd(3)Cl(6)             | 94.3 (1)   |
| Cl(4)Cd(3)-Cl(5)                            | 86.7 (1)   | Cl(4)Cd(3)O(4W)             | 94.1 (1)   |
| Cl(4) - Cd(3) - O(3W)                       | 93.4 (1)   | Cl(5)-Cd(3)-Cl(6)           | 94.0(1)    |
| Cl(4)Cd(3)Cl(6 <sup>ii</sup> )              | 176.6 (1)  | Cl(5)Cd(3)O(4W)             | 176.8 (2)  |
|                                             | . ,        |                             |            |

| Cl(5)—Cd(3)—O(3W)                | 95.3 (2)   | Cl(5)—Cd(3)—Cl(6 <sup>ii</sup> ) | 91.7 (1)     |
|----------------------------------|------------|----------------------------------|--------------|
| Cl(6)—Cd(3)—O(3W)                | 168.2 (2)  | Cl(6)—Cd(3)—Cl(6 <sup>ii</sup> ) | 88.8 (1)     |
| Cl(6)—Cd(3)—O(4W)                | 82.8 (2)   | O(3W) - Cd(3) - Cl(6'')          | 83.8 (1)     |
| O(3W) - Cd(3) - O(4W)            | 87.8 (2)   | Cd(1)Cl(1)Cd(1 <sup>i</sup> )    | 91.5 (1)     |
| $O(4W)$ — $Cd(3)$ — $Cl(6^{ii})$ | 87.8(1)    | Cd(1)—Cl(3)—Cd(2)                | 91.0(1)      |
| Cd(1)-Cl(2)-Cd(2)                | 92.4(1)    | Cd(2)—Cl(5)—Cd(3)                | 91.7 (1)     |
| Cd(2)—Cl(4)—Cd(3)                | 91.5(1)    | Cd(2)—O(5)—C(19)                 | 128.3 (8)    |
| Cd(3)-Cl(6)-Cd(3 <sup>ii</sup> ) | 91.2(1)    | O(5)-C(19)-C(20)                 | 111.9 (11)   |
| Cd(2)-O(5)-C(19')                | 126 (2)    | Cd(2)-O(6)-C(21)                 | 128.2 (6)    |
| O(5)—C(19')—C(20)                | 113 (4)    | O(6) - C(21) - C(22')            | 103.5 (13)   |
| O(6)—C(21)—C(22)                 | 103.7 (16) | C(2) = N(1) = C(9)               | 119.9 (6)    |
| C(2)—N(1)—C(5)                   | 121.4 (6)  | C(7)—N(2)—C(10)                  | 123.0 (7)    |
| C(5)—N(1)—C(9)                   | 118.5 (7)  | C(10)—N(2)—C(11)                 | 114.7 (8)    |
| C(7)—N(2)—C(11)                  | 122.3 (7)  | C(3)—N(3)—C(16)                  | 122.0 (6)    |
| C(3)—N(3)—C(12)                  | 119.9 (6)  | C(14)—N(4)—C(17)                 | 121.7 (7)    |
| C(14)—N(4)—C(18)                 | 122.7 (7)  | C(17)—N(4)—C(18)                 | 115.5 (8)    |
| O(1)—C(1)—O(2)                   | 126.9 (10) | O(1) - C(1) - C(2)               | 116.6 (8)    |
| O(2)—C(1)—C(2)                   | 116.4 (9)  | N(1) - C(2) - C(1)               | 117.1 (7)    |
| N(1) - C(2) - C(3)               | 120.3 (8)  | C(1) - C(2) - C(3)               | 122.4 (8)    |
| N(3)-C(3)-C(2)                   | 122.7 (8)  | N(3)—C(3)—C(4)                   | 113.3 (6)    |
| C(2)—C(3)—C(4)                   | 123.9 (8)  | O(3)—C(4)—O(4)                   | 126.2 (8)    |
| O(3)—C(4)—C(3)                   | 115.3 (7)  | O(4)—C(4)—C(3)                   | 117.7 (7)    |
| N(1)-C(5)-C(6)                   | 121.5 (7)  | C(5)—C(6)—C(7)                   | 121.6 (7)    |
| N(2)—C(7)—C(6)                   | 122.6 (7)  | N(2)—C(7)—C(8)                   | 122.6 (8)    |
| C(6)—C(7)—C(8)                   | 114.7 (8)  | C(7)—C(8)—C(9)                   | 120.6 (7)    |
| N(1)-C(9)-C(8)                   | 123.0 (7)  | N(3)-C(12)-C(13)                 | 121.3 (7)    |
| C(12)—C(13)—C(14)                | 122.2 (7)  | N(4) - C(14) - C(13)             | 121.6 (7)    |
| N(4)-C(14)-C(15)                 | 123.0 (7)  | C(13)—C(14)—C(15)                | 115.4 (8)    |
| C(14)—C(15)—C(16)                | 120.7 (7)  | N(3) - C(16) - C(15)             | 122.6 (7)    |
| Cl(1)— $Cd(1)$ — $Cl(3)$         | 92.9 (1)   |                                  |              |
| O(1)-C(1)-C(2)-C(3)              | 4.0 (9)    | O(3)-C(4)-C(3)-C(2)              | ) 89.9 (9)   |
| C(5)-N(1)-C(2)-C(3)              | 119.6 (8)  | C(12) - N(3) - C(3) - C(3)       | 2) 127.4 (8) |
| Symmetry codes: (i) 1            | -x, -y, -z | ; (ii) $1 - x, -y, 1 - z$ .      |              |

### Table 3. Hydrogen-bond parameters (Å, °)

The donor atom is given first in each hydrogen bond.

| $O(1W) \cdot \cdot \cdot O(1)$                            | 2.689 (10) | $O(1W) \cdots Cl(4)$                                   | 3.175 (6)  |
|-----------------------------------------------------------|------------|--------------------------------------------------------|------------|
| $O(2W) \cdots O(2)$                                       | 2.718 (11) | $O(3W) \cdots O(3)$                                    | 2.748 (10) |
| $O(3W) \cdots Cl(2)$                                      | 3.189 (7)  | O(4W)· · · O(4)                                        | 2.754 (10) |
| $O(5W) \cdot \cdot \cdot O(3^{i})$                        | 2.773 (8)  | $O(5W) \cdot \cdot \cdot Cl(6)$                        | 3.228 (9)  |
| $O(5) \cdots O(5W)$                                       | 2.629 (12) | O(6)· · ·(O4 <sup>ii</sup> )                           | 2.775 (8)  |
| $O(1) \cdots O(1W) \cdots Cl(4)$                          | 101.4 (2)  | $O(3) \cdots O(3W) \cdots Cl(2)$                       | 134.7 (2)  |
| $O(5) \cdot \cdot \cdot O(5W) \cdot \cdot \cdot O(3^{i})$ | 121.3 (3)  | $O(5) \cdot \cdot \cdot O(5W) \cdot \cdot \cdot Cl(6)$ | 118.0 (3)  |
| $O(3^i) \cdots O(5W) \cdots Cl(6)$                        | 116.1 (3)  | $O(3W) \cdots O(3) \cdots O(5W^{iii})$                 | 107.1 (3)  |
| <b>a b c b c b c b c b c c b c c c c c c c c c c</b>      |            | //// · · · · · · · · · · · · · · · · ·                 |            |

Symmetry codes: (i) x, -1 + y, z; (ii) 1 + x, y, z; (iii) x, 1 + y, z.

The structure was solved by direct methods and all non-H atoms were refined anisotropically except the disordered C atoms of the ethanol molecules [C(19), C(19'), C(22) and C(22')]. The H atoms of the double-betaine molecule were generated geometrically (C—H = 0.96 Å), and the H atoms of the water and ethanol molecules were located in difference. Fourier maps. All H atoms were assigned displacement parameters and included in the structure-factor calculations. All computations were performed on a PC 486 computer.

Data collection: P3/PC Diffractometer Control Program (Siemens, 1989). Cell refinement: P3/PC Diffractometer Control Program. Data reduction: SHELXTL-Plus XDISK (Sheldrick, 1987). Program(s) used to solve structure: SHELXTL/PC XS (Sheldrick, 1990). Program(s) used to refine structure: SHELXTL/PC XLS. Molecular graphics: SHELXTL/PC XP. Software used to prepare material for publication: SHELXTL/PC XPUBL.

This work is supported by a Hong Kong Research Grants Council Earmarked Grant (ref. CUHK 89/93E).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: KH1054). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

### References

- Chen, X.-M. & Mak, T. C. W. (1991a). J. Crystallogr. Spectrosc. Res. 21, 27-32.
- Chen, X.-M. & Mak, T. C. W. (1991b). Aust. J. Chem. 44, 639-643.
- Chen, X.-M., Mak, T. C. W., Huang, W.-Y. & Lü, L. (1992). Acta Cryst. C48, 57-59.
- Kopfmann, G. & Huber, R. (1968). Acta Cryst. A24, 348-351.
- Prince, R. H. (1987). Comprehensive Coordination Chemistry, Vol. 5, edited by G. Wilkinson, R. D. Gillard & J. A. McCleverty, pp. 925-1045. Oxford: Pergamon Press.
- Sheldrick, G. M. (1987). SHELXTL-Plus. PC version. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1990). SHELXTL/PC User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1989). P3/PC Diffractometer Control Program. Version 3.13. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Weiss, R., Roth, R., Lowack, R. H. & Bremer, M. (1990). Angew. Chem. Int. Ed. Engl. 29, 1132-1134.
- Wu, D.-D. & Mak, T. C. W. (1994a). J. Chem. Crystallogr. 24, 689– 694.
- Wu, D.-D. & Mak, T. C. W. (1994b). Polyhedron, 13, 3333-3339.
- Wu, D.-D. & Mak, T. C. W. (1995). Inorg. Chim. Acta. In the press.

Acta Cryst. (1996). C52, 529-532

### Polymeric Cadmium(II) Nitrate Adduct of a Flexible Double Betaine: $[Cd_2(L)_2(NO_3)_2(H_2O)_3]_n(NO_3)_{2n}$ [L = meso-2,5-Bis(trimethylammonio)adipate]

DE-DONG WU AND THOMAS C. W. MAK

Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong. E-mail: tcwmak@cuhk.hk

(Received 14 July 1995; accepted 30 August 1995)

### Abstract

The title complex, *catena*-poly[(diaquacadmium)- $\mu$ -[*meso*-2,5-bis(trimethylammonio)adipato-O,O':O'',O''']-(aquadinitratocadmium)- $\mu$ -[*meso*-2,5-bis(trimethylammonio)adipato-O,O':O'',O'''] dinitrate], [Cd<sub>2</sub>-(L)<sub>2</sub>(NO<sub>3</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]<sub>n</sub>(NO<sub>3</sub>)<sub>2n</sub> [L =  $-O_2$ CCH(Me<sub>3</sub>N<sup>+</sup>)-CH<sub>2</sub>CH<sub>2</sub>CH(Me<sub>3</sub>N<sup>+</sup>)CO<sub>2</sub><sup>-</sup>], consists of an infinite zigzag chain in which the two independent Cd<sup>II</sup> atoms, lying on separate crystallographic C<sub>2</sub> axes, have approximately pentagonal bipyramidal and very dis-